Числовая последовательность. Как вычислить пределы последовательностей? Произведение последовательности чисел

Пусть X {\displaystyle X} - это либо множество вещественных чисел R {\displaystyle \mathbb {R} } , либо множество комплексных чисел C {\displaystyle \mathbb {C} } . Тогда последовательность { x n } n = 1 ∞ {\displaystyle \{x_{n}\}_{n=1}^{\infty }} элементов множества X {\displaystyle X} называется числовой последовательностью .

Примеры

Операции над последовательностями

Подпоследовательности

Подпоследовательность последовательности (x n) {\displaystyle (x_{n})} - это последовательность (x n k) {\displaystyle (x_{n_{k}})} , где (n k) {\displaystyle (n_{k})} - возрастающая последовательность элементов множества натуральных чисел.

Иными словами, подпоследовательность получается из последовательности удалением конечного или счётного числа элементов.

Примеры

  • Последовательность простых чисел является подпоследовательностью последовательности натуральных чисел.
  • Последовательность натуральных чисел, кратных , является подпоследовательностью последовательности чётных натуральных чисел.

Свойства

Предельная точка последовательности - это точка, в любой окрестности которой содержится бесконечно много элементов этой последовательности. Для сходящихся числовых последовательностей предельная точка совпадает с пределом .

Предел последовательности

Предел последовательности - это объект, к которому члены последовательности приближаются с ростом номера. Так в произвольном топологическом пространстве пределом последовательности называется элемент, в любой окрестности которого лежат все члены последовательности, начиная с некоторого. В частности, для числовых последовательностей предел - это число, в любой окрестности которого лежат все члены последовательности начиная с некоторого.

Фундаментальные последовательности

Фундаментальная последовательность (сходящаяся в себе последовательность , последовательность Коши ) - это последовательность элементов метрического пространства , в которой для любого наперёд заданного расстояния найдётся такой элемент, расстояние от которого до любого из следующих за ним элементов не превышает заданного. Для числовых последовательностей понятия фундаментальной и сходящейся последовательностей эквивалентны, однако в общем случае это не так.

Если функция определена на множестве натуральных чисел N, то такая функция называется бесконечной числовой последовательностью. Обычно числовые последовательность обозначают как(Xn), где n принадлежит множеству натуральных чисел N.

Числовая последовательность может быть задана формулой. Например, Xn=1/(2*n). Таким образом мы ставим в соответствие каждому натуральному числу n некоторый определенный элемент последовательности (Xn).

Если теперь последовательно брать n равными 1,2,3, …., мы получим последовательность (Xn): ½, ¼, 1/6, …, 1/(2*n), …

Виды последовательности

Последовательность может быть ограниченной или неограниченной, возрастающей или убывающей.

Последовательность (Xn) называет ограниченной, если существуют два числа m и M такие, что для любого n принадлежащего множеству натуральных чисел, будет выполняться равенство m<=Xn

Последовательность (Xn), не являющаяся ограниченной, называется неограниченной последовательностью.

возрастающей, если для всех натуральных n выполняется следующее равенство X(n+1) > Xn. Другими словами, каждый член последовательности, начиная со второго, должен быть больше предыдущего члена.

Последовательность (Xn) называется убывающей, если для всех натуральных n выполняется следующее равенство X(n+1) < Xn. Иначе говоря, каждый член последовательности, начиная со второго, должен быть меньше предыдущего члена.

Пример последовательности

Проверим, являются ли последовательности 1/n и (n-1)/n убывающими.

Если последовательность убывающая, то X(n+1) < Xn. Следовательно X(n+1) - Xn < 0.

X(n+1) - Xn = 1/(n+1) - 1/n = -1/(n*(n+1)) < 0. Значит последовательность 1/n убывающая.

(n-1)/n:

X(n+1) - Xn =n/(n+1) - (n-1)/n = 1/(n*(n+1)) > 0. Значит последовательность (n-1)/n возрастающая.

Введение………………………………………………………………………………3

1.Теоретическая часть……………………………………………………………….4

Основные понятия и термины…………………………………………………....4

1.1 Виды последовательностей…………………………………………………...6

1.1.1.Ограниченные и неограниченные числовые последовательности…..6

1.1.2.Монотонность последовательностей…………………………………6

1.1.3.Бесконечно большие и бесконечно малые последовательности…….7

1.1.4.Свойства бесконечно малых последовательностей…………………8

1.1.5.Сходящиеся и расходящиеся последовательности и их свойства..…9

1.2Предел последовательности………………………………………………….11

1.2.1.Теоремы о пределах последовательностей……………………………15

1.3.Арифметическая прогрессия…………………………………………………17

1.3.1. Свойства арифметической прогрессии…………………………………..17

1.4Геометрическая прогрессия…………………………………………………..19

1.4.1. Свойства геометрической прогрессии…………………………………….19

1.5. Числа Фибоначчи……………………………………………………………..21

1.5.1 Связь чисел Фибоначчи с другими областями знаний…………………….22

1.5.2. Использование ряда чисел Фибоначчи для описания живой и неживой природы…………………………………………………………………………….23

2. Собственные исследования…………………………………………………….28

Заключение……………………………………………………………………….30

Список использованной литературы…………………………………………....31

Введение.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ. Мне интересно узнать связь математических последовательностей с другими областями знаний.

Цель исследовательской работы: Расширить знания о числовой последовательности.

1. Рассмотреть последовательность;

2. Рассмотреть ее свойства;

3. Рассмотреть аналитическое задание последовательности;

4. Продемонстрировать ее роль в развитии других областей знаний.

5. Продемонстрировать использование ряда чисел Фибоначчи для описания живой и неживой природы.

1. Теоретическая часть.

Основные понятия и термины.

Определение. Числовая последовательность– функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.

Число a называется пределом последовательности x = {x n }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |x n - a| < ε.

Если число a есть предел последовательности x = {x n }, то говорят, что x n стремится к a, и пишут

.

Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y1 < y2 < y3 < … < yn < yn+1 < ….

Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y1 > y2 > y3 > … > yn > yn+1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

Арифметическая прогрессия- это последовательность {an}, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность {an}, заданная рекуррентно соотношениями

a1 = a, an = an–1 + d (n = 2, 3, 4, …)

Геометрическая прогрессия- это последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q.

Таким образом, геометрическая прогрессия – это числовая последовательность {bn}, заданная рекуррентно соотношениями

b1 = b, bn = bn–1 q (n = 2, 3, 4…).

1.1 Виды последовательностей.

1.1.1 Ограниченные и неограниченные последовательности.

Последовательность {bn} называют ограниченной сверху, если существует такое число М, что для любого номера n выполняется неравенство bn≤ M;

Последовательность {bn} называют ограниченной снизу, если существует такое число М, что для любого номера n выполняется неравенство bn≥ М;

Например:

1.1.2 Монотонность последовательностей.

Последовательность {bn} называют невозрастающие (неубывающей), если для любого номера n справедливо неравенство bn≥ bn+1 (bn ≤bn+1);

Последовательность {bn} называют убывающей (возрастающей), если для любого номера n справедливо неравенство bn> bn+1 (bn

Убывающие и возрастающие последовательности называют строго монотонными, невозрастающие- монотонными в широком смысле.

Последовательности, ограниченные одновременно сверху и снизу, называются ограниченными.

Последовательность всех этих типов носят общее название- монотонные.

1.1.3 Бесконечно большие и малые последовательности.

Бесконечно малая последовательность- это числовая функция или последовательность, которая стремится к нулю.

Последовательность an называется бесконечно малой, если

Функция называется бесконечно малой в окрестности точки x0, если ℓimx→x0 f(x)=0.

Функция называется бесконечно малой на бесконечности, если ℓimx→.+∞ f(x)=0 либо ℓimx→-∞ f(x)=0

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если ℓimx→.+∞ f(x)=а, то f(x) − a = α(x), ℓimx→.+∞ f((x)-a)=0.

Бесконечно большая последовательность- числовая функция или последовательность, которая стремится к бесконечности.

Последовательность an называется бесконечно большой, если

ℓimn→0 an=∞.

Функция называется бесконечно большой в окрестности точки x0, если ℓimx→x0 f(x)= ∞.

Функция называется бесконечно большой на бесконечности, если

ℓimx→.+∞ f(x)= ∞ либо ℓimx→-∞ f(x)= ∞ .

1.1.4 Свойства бесконечно малых последовательностей.

Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Любая бесконечно малая последовательность ограничена.

Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы - нули.

Если {xn} - бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность {1/xn} , которая является бесконечно малой. Если же всё же {xn} содержит нулевые элементы, то последовательность {1/xn} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Если {an} - бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность {1/an}, которая является бесконечно большой. Если же всё же {an}содержит нулевые элементы, то последовательность {1/an} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

1.1.5 Сходящиеся и расходящиеся последовательности и их свойства.

Сходящаяся последовательность- это последовательность элементов множества Х, имеющая предел в этом множестве.

Расходящаяся последовательность- это последовательность, не являющаяся сходящейся.

Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

Если последовательность {xn} сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность {1/xn}, которая является ограниченной.

Сумма сходящихся последовательностей также является сходящейся последовательностью.

Разность сходящихся последовательностей также является сходящейся последовательностью.

Произведение сходящихся последовательностей также является сходящейся последовательностью.

Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.

Если каждому натуральному числу n поставлено в соответствие некоторое действительное число x n , то говорят, что задана числовая последовательность

x 1 , x 2 , … x n , …

Число x 1 называют членом последовательности с номером 1 или первым членом последовательности , число x 2 - членом последовательности с номером 2 или вторым членом последовательности, и т.д. Число x n называют членом последовательности с номером n .

Существуют два способа задания числовых последовательностей – с помощью и с помощью рекуррентной формулы .

Задание последовательности с помощью формулы общего члена последовательности – это задание последовательности

x 1 , x 2 , … x n , …

с помощью формулы, выражающей зависимость члена x n от его номера n .

Пример 1 . Числовая последовательность

1, 4, 9, … n 2 , …

задана с помощью формулы общего члена

x n = n 2 , n = 1, 2, 3, …

Задание последовательности с помощью формулы, выражающей член последовательности x n через члены последовательности с предшествующими номерами, называют заданием последовательности с помощью рекуррентной формулы .

x 1 , x 2 , … x n , …

называют возрастающей последовательностью, больше предшествующего члена.

Другими словами, для всех n

x n + 1 > x n

Пример 3 . Последовательность натуральных чисел

1, 2, 3, … n , …

является возрастающей последовательностью .

Определение 2. Числовую последовательность

x 1 , x 2 , … x n , …

называют убывающей последовательностью, если каждый член этой последовательности меньше предшествующего члена.

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

x n + 1 < x n

Пример 4 . Последовательность

заданная формулой

является убывающей последовательностью .

Пример 5 . Числовая последовательность

1, - 1, 1, - 1, …

заданная формулой

x n = (- 1) n , n = 1, 2, 3, …

не является ни возрастающей, ни убывающей последовательностью.

Определение 3. Возрастающие и убывающие числовые последовательности называют монотонными последовательностями .

Ограниченные и неограниченные последовательности

Определение 4. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной сверху, если существует такое число M, что каждый член этой последовательности меньше числа M .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 5. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной снизу, если существует такое число m, что каждый член этой последовательности больше числа m .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 6. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной, если она ограничена и сверху, и снизу.

Другими словами, существуют такие числа M и m, что для всех n = 1, 2, 3, … выполнено неравенство

m < x n < M

Определение 7. Числовые последовательности, которые не являются ограниченными , называют неограниченными последовательностями .

Пример 6 . Числовая последовательность

1, 4, 9, … n 2 , …

заданная формулой

x n = n 2 , n = 1, 2, 3, … ,

ограничена снизу , например, числом 0. Однако эта последовательность неограничена сверху .

Пример 7 . Последовательность

.

Лекция 8. Числовые последовательности.

Определение 8.1. Если каждому значению ставится в соответствие по определённому закону некоторое вещественное число x n , то множество занумерованных вещественных чисел

сокращённая запись
,
(8.1)

будем называть числовой последовательностью или просто последовательностью.

Отдельные числа x n элементы или члены последовательности (8.1).

Последовательность может быть задана формулой общего члена, например так:
или
. Последовательность может задаваться неоднозначно, например последовательность –1, 1, –1, 1, … можно задать формулой
или
. Иногда используют рекуррентный способ задания последовательности: задаются первые несколько членов последовательности и формула для вычисления следующих элементов. Например, последовательность, определяемая первым элементом и рекуррентным соотношением
(арифметическая прогрессия). Рассмотрим последовательность, называемую рядом Фибоначчи : задаются первые два элемента x 1 =1, x 2 =1 и рекуррентное соотношение
при любом
. Получаем последовательность чисел 1, 1, 2, 3, 5, 8, 13, 21, 34, …. Для такого ряда найти формулу общего члена довольно трудно.

8.1. Арифметические действия с последовательностями.

Рассмотрим две последовательности:

(8.1)

Определение 8.2. Назовём произведением последовательности
на число m последовательность
. Запишем так:
.

Назовём последовательность суммой последовательностей (8.1) и (8.2), запишем так: ; аналогично
назовем разностью последовательностей (8.1) и (8.2);
произведением последовательностей (8.1) и (8.2); частным последовательностей (8.1) и (8.2) (все элементы
).

8.2. Ограниченные и неограниченные последовательности.

Совокупность всех элементов произвольной последовательности
образует некоторое числовое множество, которое может быть ограничено сверху (снизу) и для которого справедливы определения, аналогичные введённым для вещественных чисел.

Определение 8.3. Последовательность
называется
ограниченной сверху , если ; М верхняя грань.

Определение 8.4. Последовательность
называется
ограниченной снизу , если ; m нижняя грань.

Определение 8.5. Последовательность
называется
ограниченной , если она ограничена и сверху, и снизу, то есть если существуют два вещественных числа М и m такие, что каждый элемент последовательности
удовлетворяет неравенствам:

, (8.3)

m и M – нижняя и верхняя грани
.

Неравенства (8.3) называют условием ограниченности последовательности
.

Например, последовательность
ограниченная, а
неограниченная.

Утверждение 8.1.
является ограниченной
.

Доказательство. Выберем
. Согласно определению 8.5 последовательность
будет ограниченной. ■

Определение 8.6 . Последовательность
называется
неограниченной , если для любого положительного (сколь угодно большого) вещественного числа А найдётся хотя бы один элемент последовательности x n , удовлетворяющий неравенству:
.

Например, последовательность 1, 2, 1, 4, …, 1, 2n , … неограниченная, т.к. ограничена только снизу.

8.3. Бесконечно большие и бесконечно малые последовательности.

Определение 8.7. Последовательность
называется
бесконечно большой , если для любого (сколь угодно большого) вещественного числа А найдётся номер
такой, что при всех
элементы
x n
.

Замечание 8.1. Если последовательность бесконечно большая, то она неограниченная. Но не следует думать, что любая неограниченная последовательность является бесконечно большой. Например, последовательность
не ограничена, но не является бесконечно большой, т.к. условие
не выполняется при всех чётных n .

Пример 8.1.
является бесконечно большой. Возьмем любое число А >0. Из неравенства
получаем n >A . Если взять
, то для всех n >N будет выполняться неравенство
, то есть согласно определению 8.7, последовательность
бесконечно большая.

Определение 8.8. Последовательность
называется
бесконечно малой , если для
(сколь угодно малого ) найдётся номер

такой, что при всех
элементы этой последовательности удовлетворяют неравенству
.

Пример 8.2. Докажем, что последовательность бесконечно малая.

Возьмём любое число
. Из неравенства
получаем . Если взять
, то для всех n >N будет выполняться неравенство
.

Утверждение 8.2. Последовательность
является бесконечно большой при
и бесконечно малой при

.

Доказательство.

1) Пусть сначала
:
, где
. По формуле Бернулли (пример 6.3, п. 6.1.)
. Фиксируем произвольное положительное число А и выберем по нему номер N такой, чтобы было справедливо неравенство:

,
,
,
.

Так как
, то по свойству произведения вещественных чисел при всех

.

Таким образом, для
найдется такой номер
, что при всех


– бесконечно большая при
.

2) Рассмотрим случай
,
(при q =0 имеем тривиальный случай).

Пусть
, где
, по формуле Бернулли
или
.

Фиксируем
,
и выберем
такой, чтобы

,
,
.

Для

. Укажем такой номер N , что при всех

, то есть при
последовательность
бесконечно малая. ■

8.4. Основные свойства бесконечно малых последовательностей.

Теорема 8.1. Сумма

и

Доказательство. Фиксируем ;
– бесконечно малая

,

– бесконечно малая

. Выберем
. Тогда при

,
,
. ■

Теорема 8.2 . Разность
двух бесконечно малых последовательностей
и
есть бесконечно малая последовательность.

Для доказательства теоремы достаточно использовать неравенство . ■

Следствие. Алгебраическая сумма любого конечного числа бесконечно малых последовательностей представляет собой бесконечно малую последовательность.

Теорема 8.3. Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Доказательство.
– ограниченная,
– бесконечно малая последовательность. Фиксируем ;
,
;
: при
справедливо
. Тогда
. ■

Теорема 8.4. Всякая бесконечно малая последовательность является ограниченной.

Доказательство. Фиксируем Пусть некоторое число . Тогда
для всех номеров n , что и означает ограниченность последовательности. ■

Следствие. Произведение двух (и любого конечного числа) бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема 8.5.

Если все элементы бесконечно малой последовательности
равны одному и тому же числу
c , то с= 0.

Доказательство теоремы проводится методом от противного, если обозначить
. ■

Теорема 8.6. 1) Если
– бесконечно большая последовательность, то, начиная с некоторого номера
n , определено частное двух последовательностей
и
, которое представляет собой бесконечно малую последовательность.

2) Если все элементы бесконечно малой последовательности
отличны от нуля, то частное двух последовательностей
и
представляет собой бесконечно большую последовательность.

Доказательство.

1) Пусть
– бесконечно большая последовательность. Фиксируем ;
или
при
. Таким образом, по определению 8.8 последовательность – бесконечно малая.

2) Пусть
– бесконечно малая последовательность. Предположим, что все элементы
отличны от нуля. Фиксируем А ;
или
при
. По определению 8.7 последовательность бесконечно большая. ■



error: