Что называется разностью потенциалов. Про разность потенциалов, электродвижущую силу и напряжение

Потенциальные поля. Можно доказать, что работа любого электростатического поля при перемещении заряженного тела из одной точки в другую не зависит от формы траектории, гак же как и работа однородного поля. На замкнутой траектории работа электростатического поля всегда равна нулю. Поля, обладающие таким свойством, называют потенциальными. Потенциальный характер, в частности, имеет электростатическое поле точечного заряда.

Работу потенциального поля можно выразить через изменение потенциальной энергии. Формула справедлива для произвольного электростатического поля. Но только в случае однородного поля энергия выражается формулой (8.19)

Потенциал. Потенциальная энергия заряда в электростатическом поле пропорциональназаряду. Это справедливо как для однородного поля (см. формулу 8.19), гак и для любого другого. Следовательно, отношение потенциальной энергии к заряду не зависит от помещенного в поле заряда.

Это позволяет ввести новую количественную характеристику поля - потенциал. Потенциалом электростатического поля называют отношение потенциальной энергии заряда в поле к этому заряду.

Согласно данному определению потенциал равен:

Напряженность поля является вектором и представляет собой силовую характеристику поля; она определяет силу, действующую на заряд в данной точке поля. Потенциал - скаляр, это энергетическая характеристика поля; он определяет потенциальную энергию заряда в данной точке поля.

Если в качестве нулевого уровня потенциальной энергии, а значит, и потенциала принять отрицательно заряженную пластину (рис. 124), то согласно формулам (8.19 и 8.20) потенциал однородного поля равен:

Разность потенциалов. Подобно потенциальной энергии, значение потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Практическое значение имеет не сам потенциал в точке, а изменение потенциала, которое не зависит от выбора нулевого уровня отсчета потенциала.

Таким образом, разность потенциалов (напряжение) между двумя точками равна отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду.

Зная напряжение в осветительной сети, мы тем самым знаем работу, которую электрическое поле может совершить при перемещении единичного заряда от одного контакта розетки к другому по любой электрической цепи. С понятием разности потенциалов мы будем иметь дело на протяжении всего курса физики.

Единица разности потенциалов. Единицу разности потенциалов устанавливают с помощью формулы (8.24). В Международной системе единиц работу выражают в джоулях, а заряд - в кулонах. Поэтому разность потенциалов между двумя точками равна единице, если при перемещении заряда в 1 Кл из одной точки в другую электрическое поле совершает работу в 1 Дж. Эту единицу называют вольтом

1. Какие поля называют потенциальными? 2. Как связано изменение потенциальной энергии с работой? 3. Чему равна потенциальная энергия заряженной частицы в однородном электрическом поле? 4. Дайте определение потенциала. Чему равна разность потенциалов между двумя точками поля?

Разность потенциалов между двумя точками в схеме представляет со­бой разность их напряжений (относительно общей точки, обычно зе­мли). Например, разность потенциалов между точками А и В на рис. 1.8 VAВ = (VA - VВ), где VA - напряжение в точке А и VВ - напряжение в точке В. Напряжения Уд и Уд измеряются относительно провода Е, име­ющего нулевой потенциал. Напряжение в любой точке электрической схемы измеряется относительно нулевого провода, корпуса или земли.

Например, если VA = 5 В и VВ = 3 В, то VAВ = VA - VВ = 5 - 3 = 2 В (рис. 1.9(а)).

Напряжения могут отличаться по знаку - быть отрицательными и по­ложительными. Разность потенциалов между двумя точками, имеющими напряжения с противоположными знаками, равна сумме этих напряже­ний.

Например, если VС = 3 В, а VD = -2 В, то V = VС + VD = 3 + 2 = 5 В (рис. 1.9(б)).

Итак, если два напряжения имеют одинаковую полярность, или оди­наковые знаки, то разность потенциалов между ними равна их разности. Если же напряжения имеют разные знаки, то разность потенциалов ме­жду ними равна их сумме.

Рис. 1.9. Наглядное представление напряжений с разными знаками относи­тельно линии нулевого потенциала

Параллельное соединение резисторов

На рис. 1.10 изображены два резистора, R1 и R2 соединенные парал­лельно. Ток I от батареи разветвляется в точке А на ток I1, протека­ющий через сопротивление R1, и ток I2, протекающий через сопротив­ление R2. В точке В эти токи складываются и образуют полный ток I = I1 + I2.



Рис. 1.10.

С другой стороны, к каждому резистору приложено полное напряже­ние V, т. е.

Полное напряжение V = напряжению на R1

Напряжению на R2.

Общее сопротивление

Общее сопротивление (R) двух резисторов, соединенных параллельно, определяется формулой:



Заметим, что общее сопротивление двух параллельных резисторов всегда меньше, чем сопротивление меньшего из них. Общее сопротивление двух параллельно соединенных резисторов, имеющих одинаковое сопротивле­ние, равно половине сопротивления одного из них.

Параллельное соединение трех и более резисторов

В общем случае общее сопротивление произвольного числа резисторов, соединенных параллельно, можно определить по формуле выше.

Пример 4

Определить общее сопротивление схемы, изображенной на рис. 1.11(а).

Решение

R1 и R2 соединены последовательно и их общее сопротивление RТ1 = R1 + R2 = 6 + 8 = 14 Ом.

Теперь, после замены резисторов R1 и R2 их общим сопротивлением RТ1, (схема на рис. 1.11(б)), резистор R3 оказался включенным параллельно с RТ1, равным ему по величине. Следовательно, их общее сопротивление RТ2 вполовину меньше каждого из них. Теперь схема примет вид, как показано на рис. 1.11(в), где RТ2 = 7 Ом и соединено последовательно с R4. Отсюда общее сопротивление схемы между точками А и В равно RТ2 + R4 = 7 + 3 = 10 Ом



Рис. 1.11

Электростатическое поле обладает энергией. Если в электростатическом поле находится электрический заряд, то поле, действуя на него с некоторой силой, будет его перемещать, совершая работу. Всякая работа связана с изменением какого - то вида энергии. Работу электростатического поля по перемещению заряда принято выражать через величину, называемую разностью потенциалов.

где q - величина перемещаемого заряда,

j 1 и j 2 - потенциалы начальной и конечной точек пути.

Для краткости в дальнейшем будем обозначать . V - разность потенциалов.

V = A/q. РАЗНОСТЬ ПОТЕНЦИАЛОВ МЕЖДУ ТОЧКАМИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ - ЭТО РАБОТА, КОТОРУЮ СОВЕРШАЮТ ЭЛЕКТРИЧЕСКИЕ СИЛЫ ПРИ ПЕРЕМЕЩЕНИИ МЕЖДУ НИМИ ЗАРЯДА В ОДИН КУЛОН .

[V] = В. 1 вольт - это разность потенциалов между точками, при перемещении между которыми заряда в 1 кулон, электростатические силы совершают работу в 1 джоуль.

Разность потенциалов между телами измеряют электрометром, для чего одно из тел соединяют проводниками с корпусом электрометра, а другое - со стрелкой. В электрических цепях разность потенциалов между точками цепи измеряют вольтметром.

С удалением от заряда электростатическое поле ослабевает. Следовательно, стремится к нулю и энергетическая характеристика поля - потенциал. В физике потенциал бесконечно удалённой точки принимается за ноль. В электротехнике же считают, что нулевым потенциалом обладает поверхность Земли.

Если заряд перемещается из данной точки в бесконечность, то

A = q(j - O) = qj => j= A/q, т.е. ПОТЕНЦИАЛ ТОЧКИ - ЭТО РАБОТА, КОТОРУЮ НАДО СОВЕРШИТЬ ЭЛЕКТРИЧЕСКИМ СИЛАМ, ПЕРЕМЕЩАЯ ЗАРЯД В ОДИН КУЛОН ИЗ ДАННОЙ ТОЧКИ В БЕСКОНЕЧНОСТЬ .

Пусть в однородном электростатическом поле с напряженностью E перемещается положительный заряд q вдоль направления вектора напряженности на расстояние d. Работу поля по перемещению заряда можно найти и через напряженность поля и через разность потенциалов. Очевидно, что при любом способе вычисления работы получается одна и та же ее величина.

A = Fd = Eqd = qV. =>

Эта формула связывает между собой силовую и энергетическую характеристики поля. Кроме того, она дает нам единицу напряженности.

[E] = В/м. 1 В/м - это напряженность такого однородного электростатического поля, потенциал которого изменяется на 1 В при перемещении вдоль направления вектора напряженности на 1 м.


ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ.

Увеличение разности потенциалов на концах проводника вызывает увеличение силы тока в нем. Ом экспериментально доказал, что сила тока в проводнике прямо пропорциональна разности потенциалов на нем.

При включении разных потребителей в одну и ту же электрическую цепь сила тока в них различна. Значит разные потребители по - разному препятсявуют прохождению по ним электрического тока. ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СПОСОБНОСТЬ ПРОВОДНИКА ПРЕПЯТСТВОВАТЬ ПРОХОЖДЕНИЮ ПО НЕМУ ЭЛЕКТРИЧЕСКОГО ТОКА, НАЗЫВАЕТСЯ ЭЛЕКТРИЧЕСКИМ СОПРОТИВЛЕНИЕМ . Сопротивление данного проводника - это постоянная величина при постоянной температуре. При повышении температуры сопротивление металлов возрастает, жидкостей - падает. [R] = Ом. 1 Ом - это сопротивление такого проводника, по которому течет ток 1 А при разности потенциалов на его концах 1В. Чаще всего используются металлические проводники. Носителями тока в них являются свободные электроны. При движении по проводнику они взаимодействуют с положительными ионами кристаллической решетки, отдавая им часть своей энергии и теряя при этом скорость. Для получения нужного сопротивления используют магазин сопротивлений. Магазин сопротивлений представляет собой набор проволочных спиралей с известными сопротивлениями, которые можно включать в цепь в нужной комбинации.

Ом экспериментально установил, что СИЛА ТОКА В ОДНОРОДНОМ УЧАСТКЕ ЦЕПИ ПРЯМО ПРОПОРЦИОНАЛЬНА РАЗНОСТИ ПОТЕНЦИАЛОВ НА КОНЦАХ ЭТОГО УЧАСТКА И ОБРАТНО ПРОПОРЦИОНАЛЬНА СОПРОТИВЛЕНИЮ ЭТОГО УЧАСТКА.

Однородным участком цепи называется участок, на котором нет источников тока. Это закон Ома для однородного участка цепи - основа всех электротехнических расчетов.

Включая проводники разной длины, разного поперечного сечения, сделанные из разных материалов, было установлено: СОПРОТИВЛЕНИЕ ПРОВОДНИКА ПРЯМО ПРОПОРЦИОНАЛЬНО ДЛИНЕ ПРОВОДНИКА И ОБРАТНО ПРОПОРЦИОНАЛЬНО ПЛОЩАДИ ЕГО ПОПЕРЕЧНОГО СЕЧЕНИЯ. СОПРОТИВЛЕНИЕ КУБА С РЕБРОМ В 1 МЕТР, СДЕЛАННОГО ИЗ КАКОГО - ТО ВЕЩЕСТВА, ЕСЛИ ТОК ИДЕТ ПЕРЕПЕНДИКУЛЯРНО ЕГО ПРОТИВОПОЛОЖНЫМ ГРАНЯМ, НАЗЫВАЕТСЯ УДЕЛЬНЫМ СОПРОТИВЛЕНИЕМ ЭТОГО ВЕЩЕСТВА . [r] = Ом м. Часто используется и несистемная единица удельного сопротивления - сопротивление проводника с площадью поперечного сечения 1 мм 2 и длиной 1 м. [r]=Ом мм 2 /м.

Удельное сопротивление вещества - табличная величина. Сопротивление проводника пропорционально его удельному сопротивлению.

На зависимости сопротивления проводника от его длины основано действие ползунковых и ступенчатых реостатов. Ползунковый реостат представляет собой керамический цилиндр с намотанной на него никелиновой проволокой. Подключение реостата в цепь осуществляется с помощью ползуна, включающего в цепь большую или меньшую длину обмотки. Проволока покрывается слоем окалины, изолирующей витки друг от друга.

А)ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ПОТРЕБИТЕЛЕЙ.

Часто в электрическую цепь включается несколько потребителей тока. Это связано с тем, что не рационально иметь у каждого потребителя свой источник тока. Существует два способа включения потебителей: последовательное и параллельное, и их комбинации в виде смешанного соединения.

а) Последовательное соединение потребителей.

При последовательном соединении потебители образуют непрерывную цепочку, в которой потребители соединяются друг за другом. При последовательном соединении нет ответвлений соединительных проводов. Рассмотрим для простоты цепь из двух последовательно соединенных потребителей. Электрический заряд, прошедший через один из потребителей, пройдет и через второй, т.к. в проводнике, соединяющем потребители не может быть исчезновения, возникновения и накапливания зарядов. q=q 1 =q 2 . Разделив полученное уравнение на время прохождения тока по цепи, получим связь между током, протекающим по всему соединению, и токами, протекающими по его участкам.

Очевидно, что работа по перемещению единичного положительного заряда по всему соединению слагается из работ по перемещению этого заряда по всем его участкам. Т.е. V=V 1 +V 2 (2).

Общая разность потенциалов на последовательно соединенных потребителях равна сумме разностей потенциалов на потребителях.

Разделим обе части уравнения (2) на силу тока в цепи, получим: U/I=V 1 /I+V 2 /I. Т.е. сопротивление всего последовательно соединенного участка равно сумме сопротивлений потебителей его составляющих.

Б) Паралельное соединение потребителей.

Это самый распространенный способ включения потребителей. При этом соединении все потребители включаются на две общие для всех потребителей точки.

При прохождении параллельного соединения, электрический заряд, идущий по цепи, делится на несколько частей, идущих по отдельным потребителям. По закону сохранения заряда q=q 1 +q 2 . Разделив данное уравнение на время прохождения заряда, получим связь между общим током, идущим по цепи, и токами, идущими по отдельным потребителям.

В соответствии с определением разности потенциалов V=V 1 =V 2 (2).

По закону Ома для участка цепи заменим силы токов в уравнении (1) на отношение разности потенциалов к сопротивлению. Получим: V/R=V/R 1 +V/R 2 . После сокращения: 1/R=1/R 1 +1/R 2 ,

т.е. величина, обратная сопротивлению параллельного соединения, равна сумме величин, обратных сопротивлениям отдельных его ветвей.

Разность потенциалов

Известно, что одно тело можно нагреть больше, а другое меньше. Степень нагрева тела называется его температурой. Подобно этому, одно тело можно наэлектризовать больше другого. Степень электризации тела характеризует величину, называемую электрическим потенциалом или просто потенциалом тела.

Что значит наэлектризовать тело? Это значит сообщить ему электрический заряд , т. е. прибавить к нему некоторое количество электронов, если мы тело заряжаем отрицательно, или отнять их от него, если мы тело заряжаем положительно. В том и другом случае тело будет обладать определенной степенью электризации, т. е. тем или иным потенциалом, причем тело, заряженное положительно, обладает положительным потенциалом, а тело, заряженное отрицательно, - отрицательным потенциалом.

Разность уровней электрических зарядов двух тел принято называть разностью электрических потенциалов или просто разностью потенциалов .

Следует иметь в виду, что если два одинаковых тела заряжены одноименными зарядами, но одно больше, чем другое, то между ними также будет существовать разность потенциалов.

Кроме того, разность потенциалов существует между двумя такими телами, одно из которых заряжено, а другое не имеет заряда. Так, например, если какое-либо тело, изолированное от земли, имеет некоторый потенциал, то разность потенциалов между ним и землей (потенциал которой принято считать равным нулю) численно равна потенциалу этого тела.

Итак, если два тела заряжены таким образом, что потенциалы их неодинаковы, между ними неизбежно существует разность потенциалов.

Всем известное явление электризации расчески при трении ее о волосы есть не что иное, как создание разности потенциалов между расческой и волосами человека.

Действительно, при трении расчески о волосы часть электронов переходит на расческу, заряжая ее отрицательно, волосы же, потеряв часть электронов, заряжаются в той же степени, что и расческа, но положительно. Созданная таким образом разность потенциалов может быть сведена к нулю прикосновением расчески к волосам. Этот обратный переход электронов легко обнаруживается на слух, если наэлектризованную расческу приблизить к уху. Характерное потрескивание будет свидетельствовать о происходящем разряде.

Говоря выше о разности потенциалов, мы имели в виду два заряженных тела, однако разность потенциалов можно получить и между различными частями (точками) одного и того же тела.

Так, например, рассмотрим, что произойдет в , если под действием какой-либо внешней силы нам удастся свободные электроны, находящиеся в проволоке, переместить к одному концу ее. Очевидно, на другом конце проволоки получится недостаток электронов, и тогда между концами проволоки возникнет разность потенциалов.

Стоит нам прекратить действие внешней силы, как электроны тотчас же, в силу притяжения разноименных зарядов, устремятся к концу проволоки, заряженному положительно, т. е. к месту, где их недостает, и в проволоке вновь наступит электрическое равновесие.

Электродвижущая сила и напряжение

Д ля поддержания электрического тока в проводнике необходим какой-то внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника.

Такими источниками энергии служат так называемые источники электрического тока , обладающие определенной электродвижущей силой , которая создает и длительное время поддерживает разность потенциалов на концах проводника.

Электродвижущая сила (сокращенно ЭДС) обозначается буквой Е . Единицей измерения ЭДС служит вольт. У нас в стране вольт сокращенно обозначается буквой "В", а в международном обозначении - буквой "V".

Итак, чтобы получить непрерывное течение , нужна электродвижущая сила, т. е. нужен источник электрического тока.

Первым таким источником тока был так называемый "вольтов столб", который состоял из ряда медных и цинковых кружков, проложенных кожей, смоченной в подкисленной воде. Таким образом, одним из способов получения электродвижущей силы является химическое взаимодействие некоторых веществ, в результате чего химическая энергия превращается в энергию электрическую. Источники тока, в которых таким путем создается электродвижущая сила, называются химическими источниками тока .

В настоящее время химические источники тока - гальванические элементы и аккумуляторы - широко применяются в электротехнике и электроэнергетике.

Другим основным источником тока, получившим широкое распространение во всех областях электротехники и электроэнергетики, являются генераторы .

Генераторы устанавливаются на электрических станциях и служат единственным источником тока для питания электроэнергией промышленных предприятий, электрического освещения городов, электрических железных дорог, трамвая, метро, троллейбусов и т. д.

Как у химических источников электрического тока (элементов и аккумуляторов), так и у генераторов действие электродвижущей силы совершенно одинаково. Оно заключается в том, что ЭДС создает на зажимах источника тока разность потенциалов и поддерживает ее длительное время.

Эти зажимы называются полюсами источника тока. Один полюс источника тока испытывает всегда недостаток электронов и, следовательно, обладает положительным зарядом, другой полюс испытывает избыток электронов и, следовательно, обладает отрицательным зарядом.

Соответственно этому один полюс источника тока называется положительным (+), другой - отрицательным (-).

Источники тока служат для питания электрическим током различных приборов - . Потребители тока при помощи проводников соединяются с полюсами источника тока, образуя замкнутую электрическую цепь. Разность потенциалов, которая устанавливается между полюсами источника тока при замкнутой электрической цепи, называется напряжением и обозначается буквой U.

Единицей измерения напряжения, так же как и ЭДС, служит вольт.

Если, например, надо записать, что напряжение источника тока равно 12 вольтам, то пишут: U - 12 В.

Для измерения или напряжения применяется прибор, называемый вольтметром.

Чтобы измерить ЭДС или напряжение источника тока, надо вольтметр подключить непосредственно к его полюсам. При этом, если разомкнута, то вольтметр покажет ЭДС источника тока. Если же замкнуть цепь, то вольтметр уже покажет не ЭДС, а напряжение на зажимах источника тока.

ЭДС, развиваемая источником тока, всегда больше напряжения на его зажимах.

Для изучения электростатического поля с энергетической точки зрения в него, как и в случае рассмотрения напряженности, вводится положительно заряженное точечное тело - пробный заряд. Допустим, что однородное электрическое поле, перемещая из точки 1 в точку 2 внесенное в него тело зарядом q и на пути l, совершает работу A = qEl (рис. 62, а). Если величина внесенного заряда будет 2q, 3q, ..., nq, то поле совершит соответственно работу: 2А, 3А, ..., nА . Эти работы различны по величине, поэтому не могут служить характеристикой электрического поля. Если взять соответственно отношения величин данных работ к величинам заряда тела, то окажется, что эти отношения для двух точек (1 и 2) есть величины постоянные:

Если подобным образом исследовать электрическое поле между двумя любыми его точками, то придем к заключению, что для любых двух точек поля отношение величины работы к величине заряда тела, перемещаемого полем между точками, есть величина постоянная, но оно в зависимости от расстояния между точками различно. Величина, измеряемая этим Отношением, называется разностью потенциалов между двумя точками электрического поля (обозначается φ 2 - φ 1) или напряжением U между точками поля. Скалярная величина, являющаяся энергетической характеристикой электрического поля и измеряемая работой, совершаемой им при перемещении точечного тела, заряд которого равен +1, из одной точки поля в другую, называется разностью потенциалов между двумя точками поля, или напряжением между этими точками. Из определения разность потенциалов напряжение U = φ 2 - φ 1 = Δφ.

Вокруг каждого заряженного тела имеется электрическое поле. С увеличением расстояния от тела до любой точки поля сила, с которой оно действует на внесенный в него заряд, уменьшается (закон Кулона) и в какой-то точке пространства практически становится равной нулю. Место, где не обнаруживается действия электрического поля данного заряженного тела, называется бесконечно удаленным от него.

Если шарик электроскопа помещать в разные точки электрического поля заряженного шарика электрофорной машины, то оно заряжает электроскоп. При заземлении шарика электроскопа электрическое поле машины совсем не действует на электроскоп. Разность потенциалов между произвольной точкой электрического поля и точкой, расположенной на поверхности Земли, называется потенциалом данной точки поля относительно Земли. Он измеряется работой, для вычисления которой надо знать начальную и конечную точки пути. За одну из этих точек принята точка на поверхности Земли, и относительно ее вычисляется работа перемещения заряда, а следовательно, и потенциал другой точки.

Если электрическое поле образовано положительно заряженным телом (рис. 62, б), то оно само перемещает до поверхности Земли внесенное в него положительно заряженное тело С. Потенциалы точек такого поля считают положительными. Когда электрическое поле образовано отрицательно заряженным телом (рис. 62, в), для перемещения положительно заряженного тела С до поверхности Земли нужна посторонняя сила F пост. Потенциал точек такого поля считается отрицательным.

Если известны потенциалы точек поля φ 1 и φ 2 , то, исходя из формулы разности потенциалов, можно вычислить работу перемещения заряженного тела из одной точки поля в другую: A = q(φ 2 - φ 1), или A = qU. Поэтому разность потенциалов и является энергетической характеристикой электрического поля. По этим формулам подсчитывается работа перемещения заряда в однородном и неоднородном электрических полях.

Установим единицу измерения напряжения (разности потенциалов) в системе СИ. Для этого в формулу напряжения подставим значение А = 1 дж и q = 1 к:


За единицу напряжения - вольт - принята разность потенциалов между двумя точками электрического поля, при перемещении между которыми точечного тела с зарядом в 1 к поле совершает работу в 1 дж.



error: